skip to main content


Search for: All records

Creators/Authors contains: "Yu, Zhefu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    AT2019pev is a nuclear transient in a narrow-line Seyfert 1 galaxy at z = 0.096. The archival ultraviolet, optical, and infrared data showed features of both tidal disruption events and active galactic nuclei (AGNs), and its nature is not fully understood. We present detailed X-ray observations of AT2019pev taken with Swift, Chandra, and NICER over 173 d of its evolution since the first Swift XRT epoch. The X-ray luminosity increases by a factor of 5 in 5 d from the first Swift XRT epoch to the light-curve peak. The light curve decays by a factor of 10 over ∼75 d and then flattens with a weak re-brightening trend at late times. The X-ray spectra show a ‘harder-when-brighter’ trend before peak and a ‘harder-when-fainter’ trend after peak, which may indicate a transition of accretion states. The archival ground-based optical observations show similar time evolution as the X-ray light curves. Beyond the seasonal limit of the ground-based observations, the Gaia light curve is rising towards an equally bright or brighter peak 223 d after the optical discovery. Combining our X-ray analysis and archival multiwavelength data, AT2019pev more closely resembles an AGN transient.

     
    more » « less
  2. ABSTRACT

    Contemporary reverberation mapping campaigns are employing wide-area photometric data and high-multiplex spectroscopy to efficiently monitor hundreds of active galactic nuclei (AGNs). However, the interaction of the window function(s) imposed by the observation cadence with the reverberation lag and AGN variability time-scales (intrinsic to each source over a range of luminosities) impact our ability to recover these fundamental physical properties. Time dilation effects due to the sample source redshift distribution introduce added complexity. We present comprehensive analysis of the implications of observational cadence, seasonal gaps, and campaign baseline duration (i.e. the survey window function) for reverberation lag recovery. We find that the presence of a significant seasonal gap dominates the efficacy of any given campaign strategy for lag recovery across the parameter space, particularly for those sources with observed-frame lags above 100 d. Using the Australian Dark Energy Survey as a baseline, we consider the implications of this analysis for the 4MOST/Time-Domain Extragalactic Survey campaign providing concurrent follow-up of the Legacy Survey of Space and Time deep-drilling fields, as well as upcoming programmes. We conclude that the success of such surveys will be critically limited by the seasonal visibility of some potential field choices, but show significant improvement from extending the baseline. Optimizing the sample selection to fit the window function will improve survey efficacy.

     
    more » « less
  3. null (Ed.)
  4. ABSTRACT

    The correlation between the broad line region radius and continuum luminosity (R–L relation) of active galactic nuclei (AGNs) is critical for single-epoch mass estimates of supermassive black holes (SMBHs). At z ∼ 1–2, where AGN activity peaks, the R–L relation is constrained by the reverberation mapping (RM) lags of the Mg ii line. We present 25 Mg ii lags from the Australian Dark Energy Survey RM project based on 6 yr of monitoring. We define quantitative criteria to select good lag measurements and verify their reliability with simulations based on both the damped random walk stochastic model and the rescaled, resampled versions of the observed light curves of local, well-measured AGN. Our sample significantly increases the number of Mg ii lags and extends the R–L relation to higher redshifts and luminosities. The relative iron line strength $\mathcal {R}_{\rm Fe}$ has little impact on the R–L relation. The best-fitting Mg iiR–L relation has a slope α = 0.39 ± 0.08 with an intrinsic scatter $\sigma _{\rm rl} = 0.15^{+0.03}_{-0.02}$ . The slope is consistent with previous measurements and shallower than the H β R–L relation. The intrinsic scatter of the new R–L relation is substantially smaller than previous studies and comparable to the intrinsic scatter of the H β R–L relation. Our new R–L relation will enable more precise single-epoch mass estimates and SMBH demographic studies at cosmic noon.

     
    more » « less
  5. ABSTRACT Reverberation mapping is a robust method to measure the masses of supermassive black holes outside of the local Universe. Measurements of the radius–luminosity (R−L) relation using the Mg ii emission line are critical for determining these masses near the peak of quasar activity at z ≈ 1−2, and for calibrating secondary mass estimators based on Mg ii that can be applied to large samples with only single-epoch spectroscopy. We present the first nine Mg ii lags from our 5-yr Australian Dark Energy Survey reverberation mapping programme, which substantially improves the number and quality of Mg ii lag measurements. As the Mg ii feature is somewhat blended with iron emission, we model and subtract both the continuum and iron contamination from the multiepoch spectra before analysing the Mg ii line. We also develop a new method of quantifying correlated spectroscopic calibration errors based on our numerous, contemporaneous observations of F-stars. The lag measurements for seven of our nine sources are consistent with both the H β and Mg ii R−L relations reported by previous studies. Our simulations verify the lag reliability of our nine measurements, and we estimate that the median false positive rate of the lag measurements is $4{{\ \rm per\ cent}}$. 
    more » « less
  6. null (Ed.)